Non-Aqueous Solvent-based CO₂ Capture Process Marty Lail¹, Joshua Herr¹, Kelly Amato¹, Markus Lesemann¹, and Luke Coleman¹ Christian Riemann², Kumar Sugavanam², Sean Rigby², Todd Spengeman², Georg Sieder², and Torsten Katz² ¹Center for Energy Technology, RTI International, Research Triangle Park, NC 27709, USA ²Gas Treatment Process Technology, BASF Corporation, Houston, TX 77002, USA Not degraded by water ### Objective Develop novel, non-aqueous CO₂ scrubbing Performance Targets solvents and capture process that substantially reduces the parasitic energy penalty and corresponding increase in cost of electricity for post-combustion COcapture compared to state-of-the-art CO2 # Rehailer Duty < 2 ft G.l/tonne CO. Plant Efficiency < 7 points loss conomic Indicators: % Increase in COF < 50% Cost of CO₂ Avoided < \$45/tonne ### **Background** ### **Current Situation** - . State-of-the-art CO2 capture processes have high thermal and electrical energy requirements - . Large quantity of high quality steam required for solvent regeneration derates low-pressure steam turbine - . Large compression energy requirement due to low CO2 partial pressure generated during solvent regeneration -> derates electrical generation Parasitic power load ranges from 1,200 to 1,500 kJe / kg CO₂ - State-of-the-art CO2 capture processes have high capital and - Extremely large process equipment - Expensive materials of construction due to corrosivity of solvents - . High degradation rates due to O2 and SO2 in flue gas - Evaporative losses and wastewater treatment requirements - Increase in Cost of Electricity (ICOE): > 65% - Cost of CO₂ Avoided: > \$60 / tonne - Current USDOE ICOE targets for post-combustion CO₂ capture ### Path to Reducing ICOE and Cost of CO₂ Avoided Power + Capital + Operating Break Down¹ Consumption Expense Expense Largest contributor to ICOE is the Power Consumption → Reboiler Duty ### Reboiler Heat Duty Contribution Breakdown | Solvent | C _p [J/g K] | Ah _{abs} [kJ/mol] | Δh _{vap} [kJ/mol] | X _{solv}
[mol solvent/
mol solution] | Δα
[mol CO ₂ /
mol solvent] | Reboiler Heat
Duty
[GJ/tonne CO ₂] | |--------------------------------|------------------------|----------------------------|----------------------------|---|--|--| | MEA (30%) | 3.8 | 85 | 40 | 0.11 | 0.34 | 3.22 | | Lower Energy
Solvent System | 1 | 1 | 1 | 1 | 1 | 1 | - Aqueous systems have similar properties such as high heat capacities, heats of absorption and vaporization, and high dilutions - Reboiler heat duties are similar and can only be improved marginally by lower heats of absorption or increase in concentration of amine. ### Development Approach ### Non-aqueous solvent systems - · Desirable physical and chemical properties to lower reboiler duty V—ОН Rate = 10 s⁻¹ # Development Approach (cont'd) ### Technical Challenges for Non-Aqueous Solvents - Chemical degradation by water - Water reacts with stronger bases producing the hydroxide anion - CO₂ is absorbed as a bicarbonate salt requiring more energy for regeneration Physical accumulation of water from flue gas in solvent - Flue gas from wet EGD is saturated (~15%) with water vapor. - can condense or be desiccated by non-aqueous solvents in the absorber - vessel under optimal absorption conditions until VLLE is established Solids formation in rich solvent - . Many non-aqueous solvents form insoluble solids at high CO2 loadings - Solids can accumulate in packing or other undesirable areas in the process Viscosity of solvent - Affects rate of CO₂ capture and operation of columns Impacts size of absorber and regenerator vessels - Foaming - Anti-foaming agents must be added to avoid entrainment and frothing Development approach is focused on addressing these and additional challenges # Technology Development Plan - Comprehensive solvent screening Identify solvent systems . Determine thermodynamic and physio- - CO₂ capture process modeling Develop comprehensive process mode - · Evaluate novel process configurations and integration schemes ### Relevant Environment Validation Bench-scale testing to assess - Continuous flow CO₂ capture unit - testing with high-fidelity flue gas Collect process data to support simulation and design of pilot unit de · CO2 capture process modeling # **Experimental Resources** ### Highly Automated Solvent Evaluation System ### Fully-automated VLE and Reaction Calorimeter - Vapor-liquid Equilibrium (P_{CO2} vs CO₂ Loading) - Reaction Calorimetry (Heat of CO₂ Absorption) · Specific Heat Capacity ### **Experimental Results** ### Heat of CO₂ Absorption CO2 Loading (mol CO2/mol solvent) ### Long-Term Testing with High-fidelity Flue Gas ### **Evaluation Conditions** # Absorption: 14%CO₂, 4%O₂, 50 ppm SO₂, Bal. N₂ Water Content: Solvent fully saturated ## Temperature: Ramp to 75°C Gas Composition: N₂ Purge Water Content: Solvent fully saturated ### Solvents evaluated continuously for ~400 hours Water accumulation is a major hurdle for nonaqueous systems ### RTI's Non-Aqueous Solvents: - Are selective for non-aqueous reaction pathways in the presence of water - Have low water solubility and therefore form a separate liquid phase in the presence of water Maintain a system-wide water balance without - distillation and offer low-energy separation options Have low regeneration temperatures allowing use of lower quality steam ### **Process Engineering** - Short-cut method for estimating the reboiler duty is a very useful tool for identifying promising solvent systems - . Uses experimentally collected data (no inferred or estimated properties) . Has been shown to accurately estimate the reboiler duty (largest contributor to the total energy penalty) - Approach is fundamentally applicable to all gas absorption systems Conditions: CO₂ Capture Extent: CO₂ Absorber Temperature: 40°C Regenerator Temperature: 120°C ### Results · Non-aqueous solvents have regeneration energies < 2.5 GL/tonne CO. • > 35 – 55 % reduction compared to SOTA processes # • Process model of a supercritical PC power plant has been developed to estimate parasitic power load and net energy penalty (Aspen Plus) Basis: Case 12 – Supercritical PC Power Plant with CO₂ Capture. Cost and Performance Comparison of Fossil Energy Power Plants (2007), DOE/NETL- # Case 12 – Supercritical PC Power Plant | CO ₂ Capture
Scenario | Net
Power
[kWe] | Net
Efficiency
[%] | Efficiency
Point Loss | Parasitic
Power Load ¹
[kJe/kg CO ₂] | | | | | |-------------------------------------|-----------------------|--------------------------|--------------------------|---|--|--|--|--| | No Capture | 784,700 | 39.1 | - | N/A | | | | | | With Capture
Econamine FG+ | 545,995 | 27.2 | 11.9 | 1,511 | | | | | | Non-Aqueous Solve | ents | | | | | | | | | CarboKatz | 643,585 | 32.1 | 7.0 | 900 | | | | | | SugavaSep | 672,729 | 33.6 | 5.5 | 710 | | | | | | ColemaClean | 642,788 | 32.1 | 7.0 | 900 | | | | | | LesemaLiquid | 631.385 | 31.5 | 7.6 | 970 | | | | | - Non-aqueous solvent CO₂ capture processes have much lower parasitic power loads - · Primarily due to lower quantity and quality of steam required for solvent regeneration - Parasitic power load [kJ_a / kg CO₂] of non-aqueous solvents is approx. 50% of state-of-the-art CO₂ capture processes - Potential for significant reduction in increase in cost of electricity ## **Current and Planned Activities** - Design and construction of a bench-scale process unit for evaluating non-aqueous solvents in a representative process configuration, under realistic conditions with real, fossil fuel derived flue gas - . Installed, commissioned, and operational by January 2012 Long-term evaluation of non-aqueous solvents with real flue gas · Continued detailed technical and economic assessment ### Acknowledgements ARPA-E Team: Dr. Daniel Matuszak and Dr. Mark Hartney Funding: DOE/ARPA-E Grant #: DE-AR0000093